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Machine Learning Ensemble Model for Improved Personalized Lung Cancer Risk 
Assessment and Malignant Nodule Detection 

Lung cancer is the deadliest cancer, causing 1.4 million deaths annually due to late 

diagnosis and limited access to screening specialists. Currently, high-risk patients (guideline of 

>50 years and >30 smoking-pack-years) are advised to undergo a CT scan, omitting other high-

risk candidates that do not fit the screening criteria.  Furthermore, malignant lung nodule 

detection is similar to finding a needle in a haystack; nodules are often less than 3x3x3mm in a 

400x400x400mm CT scan and often benign/indeterminate. This causes radiologist screening of 

nodules to be expensive, low-throughput, and often inaccurate.  

This study develops an algorithm that utilizes machine learning and radiomics to build a 

complete lung cancer diagnostic pipeline. For preliminary lung cancer risk assessment, a 50-tree 

Gradient Boosted Machine (GBM) employs personalized statistics including age, prescriptions, 

ethnicity, body mass index, blood pressure, and diagnoses to better assess true risk of patients. 

Once a CT scan is conducted, an ensemble of 3D Convolutional Neural Networks (CNNs) of 

discriminator VGG-like and U-net architectures, trained with multitudinous augmentations and 

gradient clipping on a hand-engineered dataset, determine nodule morphology (luminosity, 

spiculation, size), position, and malignancy; from these features, a linear classifier predicts lung 

cancer development in one year. 

The GBM significantly surpasses current high-risk guideline assessments, capturing 

omitted patient groups (sensitivity increased from 0.23 to 0.88). Moreover, the CNN Ensemble 

obtained statistically comparable predictions to radiologist readings of scans. The combined 

system increases early-detection rates and decreases radiologist involvement in screening, 

thereby greatly improving the timeliness, accuracy, and affordability of lung cancer detection. 
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Introduction 

Lung Cancer: 

Human cells require an adequate supply of oxygen to function properly. The location of 

this oxygen inflow as well as carbon dioxide release is the lungs. A mucus layer on the cilia acts 

as a defensive mechanism and protects the lungs from bacteria, viruses, and other toxins from the 

outside environment. However, the lungs still experience a plethora of diseases including chronic 

obstructive pulmonary disease, asthma, bronchitis, pneumonia, sarcoidosis, tuberculosis, 

pulmonary fibrosis, and lung cancer due to constant interaction with foreign air. These diseases 

are often difficult to differentiate and require specialized radiologists to diagnose. This study 

focuses on lung cancer, which develops as a result of genetic damage to oncogenes and tumor 

suppressing genes, engendering rapid and uncontrolled cell proliferation. 

Lung cancer is one of the deadliest forms 

of cancer, resulting in over 1.4 million deaths 

annually (Yu, et al. 2016). Smoking, in addition 

to other lung carcinogens such as asbestos, 

radon, and arsenic, is responsible for over 85% 

of lung cancer cases (Adetiba, Olugbara 2015). 

There are two types of lung cancer: small cell 

lung cancer (SCLC), making up 13% of cases 

and non-small cell lung cancer (NSCLC), making up 

the remaining 87% of cases. NSCLC is classified as more dangerous due to its slow moving 

nature; NSCLC prognosis statistics display that Stage IA diagnosis five-year survival is 67% , 

Stage IIA diagnosis five-year survival is 55%, Stage IIIA diagnosis five-year survival is 23%, 

Figure 1: Known Lung Cancer Risk 
Factors (National Jewish Health 2012) 
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and Stage IVA diagnosis five-year survival is 1% (Adetiba, Olugbara 2015). Lung cancer 

manifests as pulmonary nodules, which are defined as “round opacities, at least moderately well 

marginated and no greater than 3 cm in maximum diameter”; larger masses are called pulmonary 

masses and have a higher probability of representing cancer (Girvin, Ko 2008).  

 

Current Detection Techniques: 

Presently at most medical centers, patients above the age of 50 with a smoking history of 

at least a pack a day are advised to conduct a chest tomography (CT) scan if feeling symptoms 

such as chest pain. Recent advances in CT scanning render it significantly better at small nodule 

detection than other tests; therefore, the US Preventive Task Force (USPTF) recommends yearly 

screening and tomography computation for high risk patients (Girvin, Ko 2008). Other detection 

imaging such as magnetic resonance imaging (MRI), and Positron emission tomography (PET) is 

used less often.  

From scans, radiologists 

attempt to find malignant nodules. As 

displayed in Figure 2, malignant lung 

cancer masses are easily visible in CT 

scans. However, small lung cancer 

nodules are much more difficult to identify, and are often confused with pneumonia or pleural 

effusion. Moreover, the “overall identification of lung cancer images using this radiological 

equipment is very low at the early stage of the disease [because] radiologists… do not sometimes 

differentiate accurately between malignant and benign and forms of lesions” within the lungs 

(Adetiba, Olugbara 2015). The tedious and subjective analysis of elderly and large-smoking-

Figure 2: Large Malignant Mass, left and Smaller 
Pulmonary Nodule, right 
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history patients prevents high patient throughput and more importantly, omits a large proportion 

of possible candidates that may not fit the testing age or smoking history criteria. In addition, 

low-dosage CT scans are expensive, ranging from $270 to $5000 and increase the risk for 

cancer. It would be beneficial to develop a Computer-Assisted Diagnosis (CAD) model to 

consider all possible patients, ease the load of the radiologist, and possibly identify features not 

perceived by radiologists. 

 

Computer-Assisted Diagnosis Intelligent Techniques: 

Presently, two primary CAD approaches have been developed for general malignant 

nodule detection: a radiomics approach employing radiological quantitative features (QIF) and a 

deep learning approach using techniques such as a 2D convolutional neural network (CNN) 

(Causey 2018). The deep learning approach shows great potential; however, its feature 

computation remains enigmatic to physicians due to a “blackbox effect,” and therefore people 

are skeptical for generalized use. While the radiomics approach requires properly pre-segregated 

nodules, CNNs can perform analysis without significant preprocessing. However, CNNs 

necessitate a much larger dataset than radiomics analysis; still, once trained, direct CNN 

prediction is much more efficient than the feature extraction prediction pipeline of radiomics 

approaches. 

Convolutional Neural Networks possess input, hidden, and output layers; the hidden 

layers often are convolutional, Rectified Linear (ReLU), and pooling layers. These layers apply a 

nonlinear filter to the image, compressing the visual field to multiple overlapping receptive fields 

that possess a smaller representation of the spatial imagery. Each convolutional unit applies a 

convolution operation (mathematically learned operation) to mimic the visual ability of a neuron 
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for a particular region. The region then passes through a nonlinear activation function to model 

the data, a pooling function (compressed), and then is passed to another convolutional unit. After 

this process repeats, the low representation of the data is mapped to some non-spatial numeric 

feature by a dense unit. On the contrary, radiomics requires individual nodule discrimination 

(often manual), nodule rendering, feature extraction, and then analysis. This model lacks the 

holistic pattern recognition that accompanies CNNs, as it simply considers known features such 

as diameter and number of nodules. 

 

While there has been significant progress in the development of both procedures, the 

results remain poor compared to experienced radiologists. Over the last few years, models have 

been assembled that attempt to combine the deep learning and radiomics fields. One such model, 

NoduleX, has reached an astonishing sensitivity level of 88.5% only after identifying possible 

benign or malignant nodules; this result is promising, but not to the level of very experienced 

radiologists, who exhibited sensitivity levels of between 94.4-96.4% in the NLST and NELSON 

trials with an average false positive rate of 0.6-2.1 (Rubin 2016). However, radiologist sensitivity 

levels vary greatly, varying from 30-97% depending on the nature of the input. Currently, CAD 

systems display a sensitivity of around 60-80% with a very high average of 28 false positives per 

Figure 3: Above is the radiomics pipeline: a region of interest is identified, the region is 
rendered in 3D, features are extracted from the feature, and some statistical model is 
applied to the feature. (Giles 2008) 
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read (Rubin 2016). Present models require excessive preprocessing, demand distinct 2D scan and 

nodule splitting, and predict possible malignant nodules, not expected cancer development risk.  

The proposed system effectively overcomes current CAD analysis limitations by making use of 

individual patient data in addition to the CT scan. This novel systematic approach will employ a 

UNET architecture applied to a 3D scan in addition to a fully-connected convolutional network 

and discriminator CNN. Finally, a gradient boosted machine (algorithm that intelligently weights 

malignant nodules and patient features) is utilized to predict pulmonary cancer development risk. 

This model is superior to traditional models because it considers all possible patients (not just 

patients in the supposed risk population), assesses individual patient features (age, smoking 

history, etc) in addition to the CT scan, uses an image-size agnostic architecture, splits 

segmentation and analysis into distinct and automated stages, and computes a final, single-digit 

numeric predictor of malignant pulmonary cancer development within the next year. 

The objective of this research was to address inefficiencies with the current pipeline for 

malignant lung cancer development risk—mainly its low throughput, sometimes inaccurate 

assessment, and omission of a large proportion of possible candidates. Malignant lung nodule 

prediction is similar to finding a needle in a haystack as in a 400x400x400mm CT scan, nodules 

are often less than 3x3x3mm in volume and often benign or indeterminate; this causes the 

brutally tedious task of radiologist analysis is subjective, sluggish, often incomplete, and 

expensive. Furthermore, the current high risk candidate selection imprecisely defines patients, 

omitting a large proportion of possible candidates that may not fit the testing age or smoking 

history criteria. Finally, this research confronts impediments to reliance on CAD models (mainly 

high false positives and negatives) by hand modifying an accumulation of datasets and 

integrating several aspects of forefront CT-analysis models with creative modifications. A 
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preliminary intelligent survey will be constructed to assess initial malignant lung cancer risk. The 

survey will indicate predicted risk and whether or not the patient should conduct a CT scan. In 

order to better predict possible high-risk lung cancer candidates, this project employs age, 

prescriptions, ethnicity, BMI, blood pressure, and diagnoses to assess the likelihood of malignant 

cancer development. Moreover, once a low-dosage CT scan is conducted, multiple 3D 

convolutional neural network models with accumulated and hand-modified datasets would be 

utilized to observe malignant nodules. The use of this model would enable a faster and more 

accessible assessment of lung cancer.  
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Methods 

This research was split into two distinct phases: intelligent assessment survey 

construction, and CT scan malignant nodule detection. Each phase of the project required 

problem analysis, exploratory data analysis, data preprocessing, model construction, model 

evaluation and revision, and result prediction. First, a preliminary literature review was 

conducted to accumulate information about lung cancer, current detection methods, and possible 

model structures. This stage of the study allowed a full immersion into the present field of 

research, which better enables feature engineering and analysis when constructing a model.  

Current research focuses on malignant pulmonary nodule CT scan detection. While 

showing promising results, false positive nodule counts are excessively high, rendering this 

software secondary to radiologist analysis. In addition, these studies limit the possible patient 

prediction to people that receive low-dosage CT scan analysis, an expensive, tedious, and often 

inaccessible test which exposes the patients to radiation risk. The preliminary survey more 

intelligently assesses initial patient risk.  

In order to grasp a better understanding of the problem and acquire a baseline for 

improvements (and whether or not there was a problem present), the Kaiser Pulmonology Unit 

was reached out to for possible problem analysis. After several interactions, the Kaiser 

Permanente Innovation Center compiled a strictly de-identified portion of the Kaiser Permanente 

Electronic Medical Record (EMR) for in-house supervised use. This dataset possessed 23,000 

patients (11,700 of which had contracted lung cancer), and variables researched to be associated. 

Metrics for evaluations including precision, recall, accuracy, and an f1 score were calculated 

based on the current screening candidate technique (patients >50 and with 30+ pack years). 

These were the standard of comparison for this study.  
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Stage 1: 

The primary candidate assessment machine was created by constructing an intelligent 

classifier based on survey data. The patient diagnosis history during the 2-years before lung 

cancer diagnosis was extracted from the EMR’s SQL Patient Database. From previous literature, 

a list of variables that may correlate with increased lung cancer risk was procured. The queried 

data from the EMR included age, smoking history, ethnicity, Body Mass Index (BMI), blood 

pressure, number and medical category of prescriptions, diagnoses, and Hierarchical Condition 

Categories (HCCs). Age and smoking history are important, established identifiers of lung 

cancer risk. In addition, ethnicity may help the model decipher any genetic risk of the cancer. 

BMI and blood pressure display the fitness and any other risk habits of the individual. The 

features of prescriptions and diagnoses allow the model to analyze the affected medical health of 

the individual. Finally, the HCCs serve as dimensionality reduction of other diagnoses 

information for the model, allowing a better indication of the patient’s physical health and 

influenced tissues. These features were queried from the SQL database, and arranged into a tab-

separated value (tsv) file. In addition, control random patient data is compiled to diversify the 

patient dataset. Next, the positive patient information and control patient information were read 

into Python 3.6 Pandas DataFrames.  

 To acquire a better understanding of the features and their relationship, exploratory data 

analysis was conducted. Histograms are generated of each of the numeric features, exhibiting 

correlations, frequency distributions, and the importance of certain features. Violinplots, 

scatterplots, and a correlation matrix are generated using the Python Library Seaborn, 

determining associations between different features. These plots are displayed in Figures 5 and 6. 
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From the distribution plots in Figure 5, age and pack-year history were determined to be 

important predictors of risk. BMI and Blood pressure, while not as ostensibly determinant, were 

included to give the model a more holistic view of the patient, allowing it to make multivariate 

connections. Age and smoking history are highly correlated (p-value = 5.4e-224) and positive 

malignant patients almost exclusively were above 40 years old. However, these statistics show 

serious flaws with the current predictive risk factor system—more than one third of the 

cancerous patients had less than 30 pack-years and over five percent of cancerous patients were 

less than 50 years old. 

  

 

 

 

 

Figure 5: Distribution Plots of Age, Pack-Years, BMI, and Systolic Blood Pressure Features above. 
Violin plot and Hex Scatterplot between Age and Pack-Years Below (created with seaborn in python) 
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Next, histograms of the diagnoses, and prescription features were created as seen in Figure 6. 

From these plots, an array of features is generated—binary one-hot vector features were coded 

for all ethnicities as well as the top twenty diagnoses (top 10 shown below) and numerical one-

hot vector features were coded for the number received of the top twenty prescriptions (top 10 

shown below) in the last two years. The plots show that diagnoses such as CKD Stage 3 and 

Medications in the Cardiovascular and EENT Preps categories are likely indicators of increased 

lung cancer risk.  

After feature engineering, the data is split 80-20% into a training set and a validation set. 

The validation set acts as an unbiased indicator of the model’s true performance of unseen data. 

A gradient boosted model and logistic regression model were constructed using H2O.  

Figure 6: Histograms of top twenty Control and Positive Sample Diagnoses (Left) and Prescriptions 
(Right)—these are encoded as one-hot vectors to be used in malignancy prediction 
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 Boosting performs significantly better than the logistic regression model during initial 

stages; consequently, logistic regression is removed from the model. This coherent response was 

expected due to the nature of the training set. While logistic regression employs one strong 

learner to determine a boundary line between the multi-dimensional space, a gradient boosted 

machine utilizes an ensemble of weak learners to formulate a strong hypothesis. This approach is 

more flexible. An initial constant tree is constructed, and fit on a subset of the dataset; the 

gradients of the loss function with respect to every variable of each data patient are computed. 

Then a subsequent tree is added to reduce the loss of the previous cumulative trees (taking a step 

towards the gradient). This process is repeated until proper model approximation occurs. To 

prevent overfitting, the number of trees was limited to 50 and partial dependency plots analyzed 

and L1 gradient descent regularization employed. Final output scores are converted to 

probabilities by a sigmoid function. 

 

 The gradient boosted decision trees are trained to optimize first the cost function of 

accuracy (!"#$%&	()&&%(*
*)*+,	!"#$%&	

) on the whole dataset and then the f1 score on combinations of a 

positive patient down sampled dataset (2 ∗ /&%(010)!∗2%(+,,
/&%(010)!32%(+,,

); this produced a generalized, accurate 

model for predicting lung cancer candidacy. The algorithm’s hyperparameters are modified to 

Figure 7: Pseudocode of the general gradient boosting algorithm (Johansson 2016). 
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improve results. The results are manually sorted through to find any error patterns; the boosted 

tree model is altered to account for these errors.  

Once the H2O model was evaluated, partial dependency plots were produced of each of 

the variables. An extremely high weight (possible overfitting) had been set to age and the control 

vs. positive datasets possessed a vast imbalance (control had many more people under 40). Thus, 

the control dataset was revised to possess only patients above the age of the 40. The model was 

retrained and reevaluated. 

Finally, the model was employed to predict the candidacy of the validation data to 

determine the true accuracy. 

 

Stage 2: 

 During the second stage, low dosage CT scans were compiled from various data sources 

including the Lung Image Database Consortium (LIDC) IDRI image collection, LUNA16, and 

National Data Science Bowl 2017 datasets in the DICOM format. Building off past research 

from the University of Pennsylvania, the DICOM files were preprocessed in a multi-step 

process: first, the pixel values were translated to Hounsfield Units  (HU), allowing densities of 

bones, tissues, water, and air to be calibrated; next, the DICOM files were resampled such that 

each pixel represents 1mm x 1mm x 1mm in the CT scan to remove variance in the scanner 

resolution; finally, the scans were bounded by the HU values of -1000 to 400 to remove 

unnecessary data (leave only the tissues and some parts of bone), as well as normalized and zero-

centered to reduce the complexity of values. These steps are fully automated.  
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Next, exploratory data analysis was 

conducted to visualize the frequency 

distribution, image of true positive 

nodules, image of false positive nodules, 

and anomalous orientation/tissue photos. 

This found a high frequency of malignant 

pulmonary masses that were unmarked—

due to their straightforward appearance, 

these were hand labeled. This significantly 

aided the CNN in training. In addition, some of the scans possessed anomalous tissue (not 

nodules); these samples had a higher chance of incurring lung cancer. 

A separate network would be trained to detect anomalous tissue. 

An ensemble of 

convolutional networks was 

trained to assess patient risk 

of lung cancer development 

within the next year from 

detected malignant nodules. 

Due to a low positive 

sampling rate (low proportion 

of patients with malignant 

nodules), various augmentation techniques (translations, reflections, and blurs) of scans were 

generated. These techniques provide the model with novel orientations of a slightly modified 

Figure 8: Anomalous Tissue Example located in 
Luna16 dataset 

Figure 9: Generated exploratory data analyses examples (not part of 
algorithm). 3D visualizations using HU values—Kaggle notebook approach. 
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image, reducing overfitting and effectively increasing the dataset size. The first portion of the 

model was a 3D Fully Convolutional Neural 

Network (FCNN) of a skip architecture. This 

CNN was tasked with nodule candidate region 

selection; rather than having a radiologist feed 

into the neural network possible malignant 

lung nodules, this hyper-efficient network 

broke down the CT scan into possible 

malignant nodule regions. This preliminary step 

is advantageous due to the nature of the FCNN network: it operates completely within the spatial 

realm without a need for the expensive fully-connected translational conclusion layers, resulting 

in the elimination of 

pointless analysis of 

all regions by the 

ensuing 

discriminators. This 

FCNN would supply 

the four following 

discriminator CNNs 

with candidate 

regions. The first of 

the constructed 

discriminators was a 

Figure 10: Hierarchy of the U-net 
(Ronneberger 2015). 

Figure 11: 3D VGG-like C3D architecture used in ensemble model. The 
receptive field is 32mm x 32mm x 32mm and Z-axis is down sampled 
first to lighten the load on the net (does not affect performance because 
Z-axis much courser than X and Y axes on most scans). In addition, three 
fully-connected layers bottleneck features, and predict nodules and 
malignancy. 
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3D U-net (hierarchy shown in Figure 12), implemented to inexpensively and accurately segment 

candidate regions for malignant pulmonary nodules. Appended to the tail of this network were 

fully-connected layer to predict the malignancy and size of each nodule. The U-net type of CNN 

is specialized for Biomedical Image Segmentation, consisting of “a contracting path to capture 

context and a symmetric expanding path that enables precise localization”; this architecture has 

outperformed the traditional sliding-window network on several 2D light-microscopy cell 

tracking competitions (Ronneberger 2015). However, the U-net acts as a course detector rather 

than a “fine-grained probability map” which may limit its functionality (Hammock 2017). For 

this reason, two 3D discriminator-scanning convolutional neural networks were engineered, both 

Figure 12: A high-level pipeline for prediction of NoduleX (Causey et. al). The proposed 
model additionally uses UNET deep CNNs, an anomalous tissue classifier, and a linear 
classifier to predict a final cancer prediction score.  
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variations of the VGG-like C3D architecture.  Again, fully-connected layers were appended to 

the end of each of these networks to predict nodule position, size, and malignancy. This 

architecture of the sliding-window CNN has been known to effectually detect malignant nodules 

in 3D space (Hammock 2017). Finally, a second 3D U-net was trained on hand-labeled data to 

predict the amount of anomalous tissue in the CT scan as opposed to the malignancy and location 

of nodules (cancerous tissue that did not originate in the lungs or otherwise unidentifiable tissue). 

The radiologist-annotated samples used malignancy labels from 1 (very likely not malignant) to 

5 (very likely malignant); these labels were squared to emphasize malignant nodules in the 

dataset. The nodule location loss function employed was the dice coefficient due to its evaluation 

of spatial overlap between true and predicted nodule segmentations. The malignancy loss 

function employed was log loss to measure classification performance. 

The malignant nodule detector 3D U-net, one of the VGG-like C3D scanning CNNs, and 

the anomalous tissue U-net were fit to a random sample of 80% of the lung cancer nodule data 

and augmented data (to up sample positives), and scored on the remaining 20% of the data. The 

second VGG-like C3D scanning CNN was fit to a hand-selected portion of the data possessing 

high false negative and positive predictions by the other networks. Finally, a linear classifier 

model was constructed to forecast the risk of cancer development within the next one year—this 

model intelligently weights the malignancy and size results of the two VGG-like C3D networks 

(predicted at scale of 1x and 0.5x) and U-net as well as the anomalous tissue percentage to 

produce a final numerical indicator of the probability of lung cancer development within the next 

year.  
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Results 

 This section contains analysis of the Gradient Boosted Machine (GBM) intelligent 

assessment survey construction and an Ensemble Convolutional Neural Network (CNN) CT scan 

malignant nodule detection obtained results.  

The GBM patient feature survey performed exceedingly well on the validation set, with 

an area under the receiver optimizer characteristic (ROC) curve of 0.92 (applicable models > 

0.80) as seen in Figure 14. The ROC curve plots the false positive rate versus the true positive 

rate at different decision thresholds, describing how well the model can differentiate between 

lung cancer cases and control patients. The metric of the area under the ROC curve lies between 

0.5 (random guessing) and 1. Values that are closer to 1 indicate a better predictive value. In 

addition, the inversely correlated precision-recall curve exhibits a high curve, presenting high 

precision and recall in middle decision boundary ranges. Table 1 shows the predictions vs labels 

of the GBM. The accuracy of the model constructed was 85.13%, which is notable considering 

that the dataset was well-balanced (~12,000 positive and ~11,000 control samples). With a 

threshold of 0.513, the f1 score (𝐹1 = 2 ∗ 7&%(010)!∗&%(+,,
7&%(010)!3&%(+,,

	) was calculated to be 86.04% (Table 

2). This evaluation metric accounts for false negatives and false positives, ensuring that the 

model has not overfit. Although age and pack-years possessed the highest predictive value, race 

and ethnic group, BMI, and Chronic Pulmonary Obstructive Disease or COPD (hcc 111) also 

had significant predictive value as seen in Figure 15. When age was limited to people 40 and 

greater, the accuracy of the model was 82.11%. Surprisingly, the blood pressure measurement 

did not influence the model. This model performs significantly better than the current age and 

pack-year high-risk detection method. Sample statistics calculated on the EMR dataset using the 

current, inflexible algorithm produced a sensitivity (𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦/𝑅𝑒𝑐𝑎𝑙𝑙 =

E&"%	/)10*0F%1
E&"%	/)10*0F%13G+,1%	H%I+*0F%1

) of 23% as compared to the GBM sensitivity of 88%. After GBM 
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intelligent survey analysis, the predicted high-risk patients would conduct a low-dosage CT scan 

for malignant pulmonary nodule assessment. 

The Low-Dosage CT Scan Cancer Prediction CNN also performed very well. For 

individual scans, the dice-coefficient loss algorithm was employed to compute the intersection 

over union of predicted nodules. The leading CNN achieved a dice similarity coefficient of 

0.8553 (between 0 and 1 where 1 signifies more similar). For individual nodule detection, the 

precision was 91.30% and the recall (sensitivity) was 89.72% (Table 2). This varied based on 

Free Response Operating The hand-labeled large pulmonary masses significantly improved the 

loss. In predicting cancer probability, the cross entropy loss of the validation set was 0.3943 

(H p, q = − 𝑝(𝑥)log	[𝑞 𝑥 ]Y∈[ ). This effectively computes the log error between the true and 

predicted labels in a binary distribution. Additionally, the area under the ROC curve was about 

0.94, displayed in Figure 14. These results are outstanding considering the small size of the 

dataset. Moreover, the classification accuracy of the Ensemble CNN classifier was 87.16%. 

However, 69.88% of validation cases were healthy, showing an imbalance between classes. 

Augmentation greatly aided the classifier in reducing overfitting, diminishing the cross entropy 

loss by a factor of 3.23. In addition, the anomalous tissue classifier helped to a small extent, 

gaining the classifier a ~ 0.010 loss advantage. Morphology prediction (luminance, shape, 

spiculation), gradient clipping, and alternate training further aided the model. The best 

performing individual CNN of the Ensemble possessed a cross-entropy loss of 0.4110, with 

alternate training and augmentation. This attests to the power of ensembling, which allowed a 

somewhat substantial improvement in predictive power.  

 Overall, the results show that pipeline is highly effectual, with a GBM survey accuracy of 

85.13% and an Ensemble CNN accuracy of 87.16% on validation sets, producing a fully-

automated model for high-risk lung cancer candidate selection and malignant pulmonary nodule 

detection/assessment.  
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Discussion 

This research proposes a Gradient Boosted Machine (GBM) for initial lung cancer risk 

assessment and a 3D Convolutional Neural Network (CNN) Ensemble for malignant pulmonary 

nodule detection.  

 The GBM employs personalized patient statistics including age, prescriptions, ethnicity, 

body mass index, blood pressure, and diagnoses to better assess the true risk of patients. This 

algorithm may have significant applications in the medical realm. This system possesses a 

sensitivity a factor of four times higher than the current technique, displaying a remarkable 

decrease in false negatives, or patients that may be misclassified by previous algorithms as not 

high-risk when they are truly high-risk. Exploratory data analysis (EDA) on the acquired EMR 

Database displayed serious flaws with the current predictive risk factor system—more than one 

third of the cancerous patients had less than 30 pack-years and over five percent of cancerous 

patients were less than 50 years old. This algorithm succeeds in capturing these previously-

omitted risk groups by use of external personalized variables; Cardiovascular prescriptions and 

Chronic Kidney Disease Stage 3 and Chronic Pulmonary Obstructive Disease diagnoses were 

labeled by the algorithm as likely indicators of increased lung cancer risk. In addition, 

Caucasians exhibited higher lung cancer risk than Hispanic and Asian ethnic groups.  

This system of affordable and fast analysis grants patients an important intelligent 

preliminary risk score, thereby helping increase early detection. This is essential in a disease 

where symptoms show solely in advanced stages, with a terminal prognosis. Expeditious 

detection catches nodules while in premature stages, engendering possible cure via lobectomy or 

chemotherapeutic agents.  



Anand 24 

Moreover, the engineered 3D CNN Ensemble for nodule detection obtains outstanding 

prediction results. This hierarchy of a Fully CNN for nodule candidate regions, multiple 3D 

CNNs for course and probabilistic nodule discrimination, and a linear regression classifier boasts 

great ability to determine nodules that will become malignant over time.  

The ensemble algorithm yielded best results when combined with a radiomics approach; 

integrating lobulation, spiculation and luminance predictions into the model aided, especially in 

borderline malignancy predictions (difficult, indeterminate nodules). Interestingly, the Z-location 

of the nodule contained a somewhat high feature importance. In addition, the manual labeling of 

large nodules in the Luna dataset and class adjustments allowed for better one-year cancer 

predictions by accounting for discrepancies between datasets. Large nodules are most indicative 

of malignancy; therefore, correct labeling and balancing of scans possessing them greatly aided 

in reducing false negatives. Scan augmentations (flip, rotate, swap) alter training scans to provide 

the network with seemingly novel scans—this effectively increased the dataset size 

exponentially, increasing accuracy and reducing overfitting.  

The high accuracy and AUC score display that this Ensemble Model is applicable to aid 

in medical diagnoses. The model’s sensitivity score of 88.54% is comparable to radiologists, 

who vary with sensitivity levels of 30 to 97% (most experienced radiologists show levels of 

80%+) depending on the nature of the input (Rubin 2016). Additionally, the false positive rate 

per scan is significantly less than current CAD models, allowing the model to help in the primary 

patient screening, rather than its current secondary screening to the radiologist standing. This 

decreases radiologist involvement in screening, thereby greatly improving the timeliness and 

affordability of detection.  
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 A similar study conducted by 

Hamidian, et al attempted the same task 

as the discussed research, using a Fully 

Convolutional Network and sole 

Discriminator Network (rather than 

Ensemble) for CT Pulmonary Nodule 

Detection. The model was trained on 

the LIDC data without preprocessing. 

The study reached a sensitivity of 80% 

with a mean 15.28 false positives per scan and showed that the Fully Convolutional Network 

(FCN) paired with Discriminator yields an 800-fold improvement in processing time per CT scan 

compared to a sole Discriminator CNN (5 seconds as opposed to 4200 seconds). This research 

confirms the choice of the FCN as an extremely viable solution for candidate assessment. 

Additionally, this study displays the outstanding accuracy of the proposed ensemble network, 

dataset modification, and multitudinous included training techniques, which attained almost 10% 

better sensitivity and many fewer false positives than the compared study.  

In summary, this complete lung cancer diagnostic pipeline provides extensive benefits 

compared to current techniques. The algorithm utilizes personalized patient features to generate 

an intelligent initial risk score, with a remarkable decrease in false negatives, or patients that may 

be misclassified by previous algorithms as not high-risk when they are truly high-risk, compared 

to the in-use risk assessment; this technique captures omitted patient groups (sensitivity 

increased from 0.23 to 0.88), thereby helping increase early detection. The CNN Ensemble 

obtains statistically comparable predictions to experienced radiologist readings of scans, 

Figure 13: Visualization of FCN candidate region predictions 
in comparable study (Hamidian, et al 2017). 
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enabling use as a primary screening tool. The proposed algorithm also predicts a great fewer 

number of false positive and false negative nodules than current CAD models. The combined 

system increases early-detection rates and decreases radiologist involvement in screening, 

thereby greatly improving the timeliness, accuracy, and affordability of lung cancer detection. 

Still, there are potential limitations to this model. The 3D hierarchy occupies a large 

amount of memory when the model grows, so the running speed is limited. In addition, the great 

number of trainable parameters and small dataset size may result in overfitting, and not 

generalize to a diverse population. Techniques such as augmentation, alternate training, and 

regularization were used to mitigate this problem.  

Further research to improve this algorithm is possible. Primarily, the training dataset size 

must be increased: only ~1600 patients can not include all variations in nodules. Other untested 

architectures, optimizers, loss functions, and hyperparameters may produce improved results. 

Finally, the development of the algorithm into an app or website would enable easy access to 

physicians in the field.  
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 Negative Positive Error 

Negative 8980 2180 0.1953 

Positive 1229 10536 0.1045 

Total 10209 12716 0.1487 

Evaluation Metric GBM (%) CNN Ensemble (%)  

Accuracy  85.13 87.16 

F1 Score 86.04 90.50 

Precision/Positive Predictive Value 82.86 91.30 

Recall (Sensitivity)/ True Positive Rate 89.55 89.72 

Specificity/True Negative Rate 80.47 83.23 

True Cancer Cases 

Pr
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Table 1: Confusion matrix of the Gradient Boosted Machine Results. This chart 
shows true positives, false positives, true negatives, and false negatives. 

Table 2: Evaluation Metrics for Gradient Boosted Machine (GBM) and Convolutional 
Neural Network (CNN) Ensemble Lung Cancer Development Predictions 
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Figure 15: Gradient Boosted Machine Variable Importance Graph. 

Figure 14: ROC Curves for Stage 1 and Stage 2 algorithm predictions. 
Orange star represents prevalent predictive algorithm specificity and 
sensitivity—Lung Screening Trial Recommendation (left) and Chon et 
al Deep 3D CNN (rights)  
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Figure 17: Visualization of 
Convolutional Layers 

Figure 16: Analysis of CNN Ensemble False 
Positive, False Negative, and True Positive 
Predictions (orange=predicted, blue=true label) 


